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Supplementary Online Material 
Supplementary Fig. 1:  

Adiabatic Decompression in 2D: (a). Two metal cylinders of 10 µm in radius, are juxtaposed together, 
forming a gap of 2 nm in between. A dipole oscillating at a frequency equivalent to a wavelength of 500 
nm in vacuum is placed at the center of the gap. The metal is lossless, (dielectric constant of -2+0.001i ). 
Maxwell’s equations are solved with a finite-element method (FEM); the electric field is plotted in the 
figure. (b) A zoomed-in view of the E-field along x-axis is plotted as the blue curve, with the envelop e(x) 
as the black curve. The chirping is evident, which suggests a possibility of super-resolution (c-d). A 
dipole located in the gap excites surface waves on the cylinders. The surface waves form interference 
pattern at the North Pole of the top cylinder, (red curve in (d)). If we move the dipole by one local 
wavelength, 5nm, at the South Pole, the pattern will change one local wavelength, 250nm, accordingly at 
the North Pole, shown as the blue curve in (d). Hence, nanometer level displacement of the point source is 
magnified and become resolvable.  
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Supplementary Fig. 2:  
A Geometrical Optical Interpretation of the Double-sphere System 
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Supplementary Fig. 3:  

 
Super-resolution imaging in a double-sphere system: (a) A 3D example consists of two metal spheres 
(dielectric constant of -2+0.001i and radius of 1.25 µm). The surface wave excited by a point dipole 
located in the gap between two metal spheres generates an image near the North Pole. Maxwell’s 
equation is solved with a method-of-moment (MoM) calculation, and the intensity of the electric field is 
plotted on the surface of the top sphere (b-c). In panel (b), the point source is located 8 nm away from the 
South Pole. Its image formed near the North Pole shifts from the North Pole (red line), and the shift is 
clearly resolvable. The super-resolution depends on the size of the gap. The gap size is 5 nm in panel (b). 
We then increase the gap size to 16 nm. As shown in panel (c), the super-resolution disappears. 
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Supplementary Fig. 4:   
Nonlocal response in a 2D double sphere system.   
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Supplementary Fig. 5:  
 

 
 
The effective mode index (A) and shortest wavelength (B) vs the loss ε2. We model a 2D MIM 
structure with a gap of 2nm. The dielectric function of the metal is modeled as ε=-2-iε2. 
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Supplementary Fig. 6:  

 
The effect of loss. High loss(red) vs low loss(blue). 
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Supplementary Movie (m1.wmv) 
This video illustrates how surface waves interfere and form a super-resolution image of a point source. 
The structure consists of a lossless metal sphere (dielectric constant of ε=-2+0.01i, and permittivity µ=1) 
with diameter of 2µm placed 5nm above an infinite large lossless metal plate. A point dipole source is 
placed in the gap, 16nm away in X direction away from the center of the gap. The polarization of the 
dipole is in Z direction. A Finite-Time-Domain-Difference (FDTD) method is used for the simulation. 
The highest frequency used in the simulation corresponds to light with wavelength of 500nm in vacuum. 
The video shows a XZ cross-section plot of the intensity of all polarizations components of the E field. 
One can see that the surface waves propagate from the bottom of the sphere to the top. A white line marks 
the North Pole. The most constructive interference appears near the North Pole, forms an image of the 
point source. One may also notice that the adiabatic decompression process from the increasing 
wavelength of the surface waves. Even though the point source is only 16nm away from the South Pole of 
the sphere, which is well below the resolution limit. The displacement of this point source is clearly 
resolvable at the North Pole, illustrating the super-resolution power. 
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Supplementary Note: 
Surface Wave on a Spherical Interface 
We consider a spherical surface of radius R . A scalar wave would satisfy the following equation: 
 ( ) ( ) ( )2 2

0, , , , 0E r k r E rθ φ ε θ φ∇ + =  (0.1) 
We consider a solution of the form: 
 ( ) ( ), , , imE r A r e φθ φ θ=  (0.2) 
Replacing (0.2) in (0.1) we obtain: 
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Let us assume a separable solution: 
 ( ) ( ) ( ),A r F r U Rθ θ=  (0.4) 

Notice that in the argument of the function U we have included the radius of curvature, so that we have 
the length along the interface s Rθ= . Using (0.4) we obtain: 
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It is convenient to express (0.5) in terms of s Rθ= : 
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Expanding the right hand side: 
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By introducing the surface wavevector sk , equation (0.7) separates as follows: 
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In the limit of infinite radius of curvature R→∞ , the second of (0.9) reduces to: 
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Equation (0.10) may be recognized as the Bessel equation and has solutions in terms of cylindrical 
waves: 
 ( ) ( ) ( ) ; 0m s m sU s a J k s bY k s s= + ≥  (0.11) 

for R→∞we must recover the plasmon at a planar interface, so 0
d m
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k k kε ε
ε ε
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For the general case we have: 

 ( ) 2 2 2 21 4 1 1 4 1
2 2

cos cos ; 0
s s

m m

k R k R

s sU s a P bQ s R
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π
+ − + −
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 (0.12) 

The degree of the associated Legendre function must be integer to ensure the continuity of the field at 
s Rπ= , so ( )2 2 1sk R n n= + . The coefficient b must also vanish to keep the solution finite everywhere: 

 ( ) cos ; 0m
n

sU s a P s R
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For a large sphere the solution (0.13) should approach (0.11), and that occurs for: 
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Double Sphere System 
To prove the proposed super-resolution imaging mechanism in the case of two spheres, which are not in 
contact, we use a method-of-moment (MoM) software (FEKO 6.0) for numerical simulation. The system 
consists of two metal spheres with radius of 1.25 µm placed 5 nm apart (supplementary Fig3a). To 
demonstrate the proposed imaging mechanism, we use a perfect metal (dielectric constant of -2+0.001i) 
to model the system. The effect of loss will be discussed later. The surface plasmon polaritons, excited by 
a point dipole placed at the middle of the gap, exhibit adiabatic decompression. All of the rays launched 
from a point dipole at the South Pole travel by an equal optical path to exhibit constructive interference at 
the North Pole. If the point dipole is moved away from the South Pole, the corresponding image point 
generated from interference will move by an equal optical distance from the North Pole. However, the 
physical distance that corresponds to the displaced optical distance is much larger. As shown in 
supplementary Fig. 3b, an 8 nm displacement of a point source in the gap can be well resolved at the 
North Pole, which is 40 times beyond the diffraction limit of 250 nm in this system. The resolution 
depends on the size of the gap, increasing the gap distance reduces the resolution. Supplementary Fig. 3c 
shows that, if we increase the gap size to 16nm, the displacement of the image of the same point dipole 
becomes hard to resolve. To further help visualize this super-resolution imaging process; a supplementary 
animation is created by a finite-difference-time-domain (FDTD) simulation showing how the surface 
wave interferes to form a super-resolution image. The adiabatic decompression depends critically on the 
smoothness of the surface, which is critical to preserve the continuity of phase relation of light. Any 
roughness comparable to the local wavelength will induce strong light scattering and violate the adiabatic 
condition. 
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Green’s function for the inhomogeneous index 
We look for the Green’s function in the double surface case: 

 (2.1) 

The problem (2.1) can be cast in the Sturm-Liouville canonical form using the following procedure. We 
write (2.1) as: 

  (2.2) 

From these we can recover the canonical Sturm-Liouville form: 

 (2.3) 
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  (2.4) 

From the Sturm-Liouville theory we know that the solutions of the eigenvalue problem (2.4) form an 
orthogonal basis with respect to the weight function defined in (2.4). The solutions of the 
eigenvalue problem (2.4) are the following:

 
 (2.5) 
The functions (2.5) are orthogonal with respect to the weight function : 

  (2.6) 

 
Note: The Green’s function can also be obtained in closed form from the knowledge of a solution  
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Nonlocal Response 
We test if the proposed adiabatic decompression exists when the nonlocal effects on strongly confined 
plasmonic modes are taken into consideration. Once the gap between the two sphere reduces to a level 
comparable to the inter electronic distance, typically on the order of 0.1 nm, the quantum effect of strong 
electron− electron interactions in the dielectric response of metals becomes pronounced1, which manifest 
itself as increased effective wavelength of the EM field in the gap region and a spatially dependent 
dispersion relation1-17. Our simulations so far have been relied on a localized picture of the dielectric 
response of metallic materials, since the gap size is larger than 2nm.  
 Recently, Luo et al8 have developed an elegant method to incorporate the nonlocal response with 
standard computer simulation methods. They showed that the nonlocal response could be modeled by as a 
composite material, comprising a thin, ~0.1nm, dielectric layer on top of a local metal. This method 
allows us to examine the impact of nonlocal response with a FEM simulation on a 2D double sphere 
system. Supplementary Fig. 4 presents the result. As we have expected, in the case of a gap size of 2nm, 
the decompression remains, even when the nonlocal effect is included.  
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Loss 
 The resolution of an adiabatic lens depends on the shortest wavelength of light that the MIM (metal-
insulator-metal) structure can compress to, which is critically determined by the level of confinement of 
light inside the gap region. This could be understood from the hyperbolic dispersion relationship of 
surface plasmon inside a MIM waveguide, 𝑘!,!! − 𝑘!! = 𝑘!!, where kz is proximally the skin depth. 
Therefore the highest kxy is about the skin depth.  
 To further investigate the effect of loss, we performed a simulation of a 2D MIM structure 
(Supplementary Fig. 5). We model a 2D MIM structure with a gap of 2 nm. The dielectric function of the 
metal is modeled as ε = -2-iε2. The figure shows that as the loss increase, (ε2 increase), the effective mode 
index decrease and the shortest compressible wavelength increase sas well. Since the resolution of an 
adiabatic lens is determined by the ratio between the wavelength of the EM wave at the far field and that 
of near field, the decrease of the effective mode index reduces the maximum magnification as well as the 
resolution.  
 The loss directly impacts the resolution of the proposed adiabatic lens. Supplementary Fig. 6 shows 
a profile of two non-coherent dipoles. The red curve corresponds to the high loss case of dielectric 
constants of -2+i, while the blue one corresponds to the low loss case. The images of two dipoles are 
resolvable (blue) when the loss is low, and not resolvable when high (red).  
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